Number of common tangents of the ellipse $\frac{{{{\left( {x - 2} \right)}^2}}}{9} + \frac{{{{\left( {y + 2} \right)}^2}}}{4} = 1$ and the circle $x^2 + y^2 -4x + 2y + 4 = 0$ is
$0$
$1$
$2$
more than $2$
Let $\mathrm{A}(\alpha, 0)$ and $\mathrm{B}(0, \beta)$ be the points on the line $5 x+7 y=50$. Let the point $P$ divide the line segment $A B$ internally in the ratio $7: 3$. Let $3 x-$ $25=0$ be a directrix of the ellipse $E: \frac{x^2}{a^2}+\frac{y^2}{b^2}=1$ and the corresponding focus be $S$. If from $S$, the perpendicular on the $\mathrm{x}$-axis passes through $\mathrm{P}$, then the length of the latus rectum of $\mathrm{E}$ is equal to
The angle between the pair of tangents drawn from the point $(1, 2)$ to the ellipse $3{x^2} + 2{y^2} = 5$ is
The the circle passing through the foci of the $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{9} = 1$ and having centre at $(0,3) $ is
Find the coordinates of the foci, the vertices, the length of major axis, the minor axis, the eccentricity and the length of the latus rectum of the ellipse $\frac{x^{2}}{36}+\frac{y^2} {16}=1$
The normal at $\left( {2,\frac{3}{2}} \right)$ to the ellipse, $\frac{{{x^2}}}{{16}} + \frac{{{y^2}}}{3} = 1$ touches a parabola, whose equation is